Abstract

The temporal variations of the airborne radon decay product dose rate and deposited radon decay product activities, as well as the within-house and house-to-house variations of radon concentrations, were evaluated through repeated field measurements. Long-term average radon and surface-deposited radon decay product concentrations were measured in 76 rooms of 38 houses. Temporal variation of radon, as well as airborne and surface-deposited radon decay products, were measured in 11 of the 38 houses during two different seasons. Environmental factors that have the potential to influence airborne dose rate and deposited radon decay products were also studied. Airborne dose rates were calculated from the unattached and attached potential alpha energy concentrations using two dosimetric models. For one model, the observed dose variations were 103%, 74%, 58%, and 60% for the total, house-to-house, within-house, and within-room temporal variations, respectively. For the other model, the dose variations were 100%, 66%, 61%, and 46%, respectively. Surface-deposited Po showed variations of 79%, 57%, 42%, and 48%, respectively. These substantial radon decay product concentration variations suggest that multiple locations and time-integrated measurements are needed to make an accurate assessment of the chronic radon-related doses in homes. Smoking was the environmental factor that had the largest temporal and spatial effect on airborne radon decay product dose rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.