Abstract

Abstract On 23 October 2011, an M w 7.1 earthquake struck the Van Lake region of eastern Turkey; causing vast damage in the cities of Van and Ercis. The mainshock was followed by a large number of aftershocks, which define a 60–70 km long and 30–35 km wide northeast–southwest‐trending structure, in agreement with the source rupture models derived for the main event. In this paper, we take advantage of this large data set to examine the spatial and temporal properties of the Van earthquake aftershock activity. We derive the spatial distribution of b ‐value of the Gutenberg–Richter law, as well as complementary seismicity parameters, along the surface projection of the fault plane. Recent studies have been published on the same issue, presenting controversial and sometimes opposite results. With respect to previous studies, we rely on a possibly higher quality catalog of relocated earthquakes. Furthermore, we adopt a more conservative approach, excluding from the analysis the first few days of data, until the M c reaches a stable completeness threshold; finally, we conduct statistical tests in order to check the significance of the spatial and temporal variation of b ‐value across the fault plane. Calculations are made for the complete catalog and for two independent aftershock subcatalogs, after which a stable magnitude of completeness M c is reached. For each catalog, we correlate the observed b ‐value patterns with slip distribution models of the mainshock obtained through the inversion of seismological and geodetic data. Overall, the b ‐values vary from 0.9 to 1.5 along the Van rupture fault zone. The higher b ‐values (>1.1) are observed around the epicenter of the mainshock characterizing the higher coseismic slip area on the fault projection. Low b ‐values are concentrated at the peripheral portion of the fault, away from high‐slip patches. Moreover, the b ‐value distribution over the fault plane undergoes significant variation throughout the aftershock sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.