Abstract

Analyses of landfast ice in Arctic coastal areas provide a comprehensive understanding of the variations in Arctic sea ice and generate data for studies on the utilization of the Arctic passages. Based on our analysis, Arctic landfast ice mainly appears in January–June and is distributed within the narrow straits of the Canadian Archipelago (nearly 40%), the coastal areas of the East Siberian Sea, the Laptev Sea, and the Kara Sea. From 1976–2018, the landfast ice extent gradually decreased at an average rate of −1.1 ± 0.5 × 104 km2/yr (10.5% per decade), while the rate of decrease for entire Arctic sea ice was −6.0 ± 2.4 × 104 km2/yr (5.2% per decade). The annual maximum extent reached 2.3 × 106 km2 in the early 1980s, and by 2018, the maximum extent decreased by 0.6 × 106 km2, which is an area approximately equivalent the Laptev Sea. The mean duration of Arctic landfast ice is 44 weeks, which has gradually been reduced at a rate of −0.06 ± 0.03 weeks/yr. Regional landfast ice extent decreases in 16 of the 17 subregions except for the Bering Sea, making it the only subregion where both the extent and duration increases. The maximum mean landfast ice thickness appears in the northern Canadian Archipelago (>2.5 m), with the highest increasing trend (0.1 m/yr). In the Northeast Passage, the mean landfast ice thickness is 1.57 m, with a slight decreasing trend of −1.2 cm/yr, which is smaller than that for entire Arctic sea ice (−5.1 cm/yr). The smaller decreasing trend in the landfast ice extent and thickness suggests that the well-known Arctic sea ice decline largely occurred in the pack ice zone, while the larger relative extent loss indicates a faster ice free future in the landfast ice zone.

Highlights

  • The Arctic is sensitive to global climate change

  • It was obtained based on the entire area covered by Arctic landfast ice

  • The entire area covered by Arctic landfast ice

Read more

Summary

Introduction

The Arctic is sensitive to global climate change. Sea ice is a crucial indicator of Arctic climate change, as it is an important part of the climate system [1,2]. Since the 21st century, Arctic warming has been twice the mean global warming rate [4,5,6]. Observations show that the amount of multiyear ice decreased from 75% in the mid-1980s to 45% in 2011 [9]. The amount of multiyear ice has decreased dramatically and has been replaced by thinner first-year ice [10,11]. Models have shown that the decrease in Arctic sea ice occurs in the summer and during other seasons [12,13]

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.