Abstract
Axial and secondary velocity profiles were measured in a model human central airway to clarify the oscillatory flow structure during high-frequency oscillation. We used a rigid model of human airways consisting of asymmetrical bifurcations up to third generation. Velocities in each branch of the bifurcations were measured by two-color laser-Doppler velocimeter. The secondary velocity magnitudes and the deflection of axial velocity were dependent not only on the branching angle and curvature ratio of each bifurcation, but also strongly depended on the shape of the path generated by the cascade of branches. Secondary flow velocities were higher in the left bronchus than in the right bronchus. This spatial variation of secondary flow was well correlated with differing gas transport rates between the left and right main bronchus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.