Abstract

This study aims to assess and compare levels of particulate matter (PM10 and PM2.5) in urban and industrial areas in Malaysia during haze episodes, which typically occur in the south west monsoon season. The high concentrations of atmospheric particles are mainly due to pollution from neighbouring countries. Daily PM concentrations were analysed for urban and industrial areas including Alor Setar, Tasek, Shah Alam, Klang, Bandaraya Melaka, Larkin, Balok Baru, and Kuala Terengganu in 2018 and 2019. The analysis employed spatiotemporal to examine how PM levels were distributed. The data summary revealed that PM levels in all study areas were right-skewed, indicating the occurrence of high particulate events. Significant peaks in PM concentrations during haze events were consistently observed between June and October, encompassing the south west monsoon and inter-monsoon periods. The study on acute respiratory illnesses primarily focused on Selangor. Analysis revealed that Klang had the highest mean number of inpatient cases for acute exacerbation of bronchial asthma (AEBA) and acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with values of 260.500 and 185.170, respectively. Similarly, for outpatient cases of AEBA and AECOPD, Klang had the highest average values of 41.67 and 14.00, respectively. Shah Alam and Sungai Buloh did not show a significant increase in cases during periods of biomass burning. The statistical analysis concluded that higher concentrations of PM were associated with increased hospital admissions, particularly from June to September, as shown in the bar diagram. Haze episodes were associated with more healthcare utilization due to haze-related respiratory illnesses, seen in higher inpatient and outpatient visits (p < 0.05). However, seasonal variability had minimal impact on healthcare utilization. These findings offer a comprehensive assessment of PM levels during historic haze episodes, providing valuable insights for authorities to develop policies and guidelines for effective monitoring and mitigation of the negative impacts of haze events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.