Abstract

One of the most compelling unanswered questions in marine ecology is the extent to which local populations are connected via larval exchange. Recent work has suggested that variation in the chemistry of otoliths (earstones) of fishes may function as a natural tag, potentially allowing investigators to determine sources of individual larvae and estimate larval connectivity. We analyzed the spatial and temporal variation in natal otolith chemistry of a benthic-spawning reef fish from the Hawaiian Islands. We found no consistent chemical variation at the largest scale (>100 km, among islands), but found significant variation at moderate scales (sites within islands, tens of kilometres) and small scales (clutches within sites), and chemistry of otoliths was not stable between years. These results imply that we may be able to use otolith chemistry to track larval dispersal only if the scales of dispersal match those of variation in natal otolith chemistry, and that separate natal otolith collections may be needed to track different cohorts of larvae. Finally, we found that elemental composition of recruit cores often did not match that of natal otoliths, suggesting that additional methodological development is required before we can effectively apply methods in otolith chemistry to the study of larval dispersal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.