Abstract

Eutrophication impacts freshwater ecosystems and biodiversity across the world. While temporal monitoring has shown changes in the nutrient inputs in many areas, how spatial and temporal beta diversity change along the eutrophication gradient under a changing context remains unclear. In this regard, analyses based on time series spanning multiple years are particularly scarce. We sampled benthic macroinvertebrates in 32 sites across three lake habitat types (MACROPHYTE, OPEN WATER, PHYTOPLANKTON) along the eutrophication gradient of Lake Taihu in four seasons from 2007 to 2019. Our purpose was to identify the relative contributions of spatial and temporal dissimilarity (i.e., inter-annual dissimilarity and seasonal dissimilarity) to overall benthic biodiversity. We also examined spatio-temporal patterns in community assembly mechanisms and how associated variation in benthic macroinvertebrate communities responded to nutrient indicators. Results showed that eutrophication caused macroinvertebrate community homogenization both along spatial and temporal gradients. Though spatial variability dominated the variation of species richness, abundance and community dissimilarity, seasons within years dissimilarity, inter-annual dissimilarity and seasonal dissimilarity were much more sensitive to eutrophication. Moreover, eutrophication inhibited a strong environmental control in benthic macroinvertebrate community assembly, including a dominant role of deterministic process in the spatial variation of macroinvertebrate communities and transition from stochastic to deterministic process in the temporal assembly of macroinvertebrate communities along the eutrophication gradient. In addition, some sites in PHYTOPLANKTON habitats showed similar spatial dissimilarity and spatial SES as sites in MACROPHYTE habitats, and the decreased spatial dissimilarity of three habitats implying that lake ecosystem recovery projects have achieved their goal at least to a certain degree.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call