Abstract

BackgroundThe presence of complex fractionated atrial electrograms (CFAEs) and high dominant frequencies (DFs) during atrial fibrillation (AF) have been demonstrated to be related to AF maintenance. Therefore, sequential mapping of CFAEs and DFs have been used for target sites of AF ablation. However, such mapping strategies are valid only if the CFAEs and DFs are spatiotemporally stable during the mapping procedure. We obtained spatially stable multi-electrode recordings to assess the spatiotemporal stability of CFAEs and DFs. MethodsWe recorded electrical activity during AF for 10min with a 64-electrode basket catheter (48 bipole electrode pairs) placed in the left atrium in 36 patients with AF (paroxysmal AF [PAF], n=16; persistent AF [PerAF], n=20). The spatial and temporal distribution of the CFAEs (fractionation interval <120ms) and high DFs (>8Hz) at 1-min intervals for 10min were compared for each of the 48 bipoles. ResultsThe baseline CFAEs were located at 68.5±14.0% (32.9±6.7) of the 48 bipoles; however, the high DF sites were fewer (9.6±8.6% [4.6±4.1 bipoles]). The CFAEs sites did not change significantly during the 10-min recording period (kappa statistic: 0.71±0.24); however, the high DF sites changed significantly (kappa statistic: 0.07±0.19). These spatiotemporal changes in the CFAEs and high DFs did not differ between patients with PAF and PerAF. ConclusionsRegardless of the AF type, CFAEs sites, but not high DF sites, showed a high degree of spatial and temporal stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call