Abstract

This study monitors the spatial and temporal variability of sea ambient noise (SAN) in the Cres-Lošinj archipelago from 2007 to 2009 (north-eastern Adriatic Sea, Croatia). The archipelago is an important marine habitat for many protected species, including the bottlenose dolphin (Tursiops truncatus) that is considered as vulnerable to disturbance from intense local vessel traffic. Systematic monthly sampling of SAN was carried out at ten predefined acoustic stations. Data on the presence, type and distance of vessels from these stations was also collected during sampling and vessels were allocated into four main classes. A sample of noise produced by a representative vessel of each vessel class was collected and the noise levels were extracted on the 1/3 octave band standard centre frequencies. All the recordings were analysed in terms of instantaneous sound pressure level (LLSP, L-weighted, 63 Hz–20 kHz, root mean square fast). The equivalent continuous sound pressure levels (LLeq) for vessel and SAN were calculated averaging the LLSP of vessel and SAN samples. Results indicate an increase of SAN levels particularly in the range of low frequencies (63 Hz–1 kHz) during the tourist season. A positive relationship was found between the spatial and temporal distribution of SAN and seasonal changes in anthropogenic pressure, in terms of vessel traffic. Potential implications for local marine life, with particular reference to bottlenose dolphins, are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.