Abstract

A central challenge in ecology is to understand the interplay of internal and external controls on the growth of populations. We examined the effects of temporal variation in weather and spatial variation in vegetation on the strength of density dependence in populations of large herbivores. We fit three subsets of the model ln(Nt) = a + (1 + b) x ln(N(t-1)) + c x ln(N(t-2)) to five time series of estimates (Nt) of abundance of ungulates in the Rocky Mountains, USA. The strength of density dependence was estimated by the magnitude of the coefficient b. We regressed the estimates of b on indices of temporal heterogeneity in weather and spatial heterogeneity in resources. The 95% posterior intervals of the slopes of these regressions showed that temporal heterogeneity strengthened density-dependent feedbacks to population growth, whereas spatial heterogeneity weakened them. This finding offers the first empirical evidence that density dependence responds in different ways to spatial heterogeneity and temporal heterogeneity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call