Abstract

Agricultural subsurface drainage can be an important conduit of nitrate from agricultural fields to streams. This study focused on understanding the variability in nitrate concentrations and loads, exported by subsurface drains, into a small, north-central Iowa stream. Ninety-three subsurface drains in this watershed were sampled up to 5 times between 2006 and 2008. Additionally, 2 subsurface drains and the stream draining the study area (South Fork Iowa River near Blairsburg, IA, USA) were sampled frequently during the growing seasons in 2007 and 2008. Spatial variability analysis revealed no distinct spatial pattern in nitrate concentrations. The median nitrate concentrations were not significantly different when the drain outlets were characterized by diameter (17-23 cm, 27-48 cm, 60-108 cm). The eight large subsurface drains (part of the public drainage network) had less variability in nitrate concentration than the smaller drain sizes and generally contributed 70-87% of the total water and nitrate loads exported by subsurface drains to the stream. During high-discharge events, the medium-sized (27-48 cm) subsurface drains discharging to the stream became more important by contributing a higher discharge and nitrate load. The temporal variability examined in this study found that discharge and nitrate loads were influenced by the amount of precipitation that had occurred over the previous months. This paper demonstrates the spatial and within-season homogeneity of nitrate delivery to a stream from an intensely agricultural landscape that has subsurface drainage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call