Abstract

Steroid hormones are often synthesized in multiple tissues, affect several different targets, and modulate numerous physiological endpoints. The mechanisms by which this modulation is achieved with temporal and spatial specificity remain unclear. 17β-estradiol for example, is made in several peripheral tissues and in the brain, where it affects a diverse set of behaviors. How is estradiol delivered to the right target, at the right time, and at the right concentration? In the last two decades, we have learned that aromatase (estrogen-synthase) can be induced in astrocytes following damage to the brain and is expressed at central synapses. Both mechanisms of estrogen provision confer spatial and temporal specificity on a lipophilic neurohormone with potential access to all cells and tissues. In this review, I trace the progress in our understanding of astrocytic and synaptic aromatization. I discuss the incidence, regulation, and functions of neuroestradiol provision by aromatization, first in astrocytes and then at synapses. Finally, I focus on a relatively novel hypothesis about the role of neuroestradiol in the orchestration of species-specific behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.