Abstract

Roads can have significant impacts on wildlife populations by impeding movement, restricting access to resources and causing wildlife–vehicle collisions. In particular, wildlife–vehicle collisions represent a substantial conservation and social problem, and although mitigation measures are available, an increased understanding of the temporal and spatial patterns of animal movement around roads will enhance their effectiveness. We analysed GPS telemetry data from 47 swamp wallabies Wallabia bicolor on Phillip Island, south-east Australia, within patches of native vegetation dissected by roads. Our aims were to determine if (a) road crossing frequency was influenced by time period (day, night) or sex, (b) wallabies avoided roads, and if avoidance was influenced by time period or sex and (c) road crossing locations were associated with dense vegetation, and other habitat characteristics. We found that males crossed roads more often at night than during the day while females showed the opposite pattern. Further, wallabies avoided roads, with some evidence that avoidance increased at night (p = 0.07). The chance of a wallaby crossing roads with high speed limits (80–100 km h-1) increased with vegetation density during the day but not at night. In contrast, vegetation density had no influence on crossing locations along roads with lower (50–70 km h-1) speed limits during the day or night. Both vegetation density and vehicle speed may influence wallaby–vehicle collisions and suggest management strategies targeting these factors. Partial fencing guiding wallabies towards safer crossing locations, combined with other measures such as reduced speed limits and signage, could reduce collisions between vehicles and swamp wallabies on Phillip Island.

Highlights

  • BioOne Complete is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses

  • We analysed global positioning system (GPS) telemetry data from 47 swamp wallabies Wallabia bicolor on Phillip Island, south-east Australia, within patches of native vegetation dissected by roads

  • Vegetation density had no influence on crossing locations along roads with lower (50–70 km h−1) speed limits during the day or night

Read more

Summary

Introduction

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. The chance of a wallaby crossing roads with high speed limits (80–100 km h−1) increased with vegetation density during the day but not at night. Vegetation density had no influence on crossing locations along roads with lower (50–70 km h−1) speed limits during the day or night. The license permits use, distribution and reproduction in any medium, provided the original work is properly cited

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call