Abstract

The integrity of the endothelial layer, which lines the entire cavity of the vascular system, depends on tight adhesion of the cells to the underlying basement membrane as well as to each other. It has been previously shown that such interactions occur via membrane receptors that determine the specificity, topology, and mechanical properties of the surface adhesion. Cell-cell junctions between endothelial cells, in culture and in situ, involve both Ca(2+)-dependent and -independent mechanisms that are mediated by distinct adhesion molecules. Ca(2+)-dependent cell-cell adhesion occurs mostly via members of the cadherin family, which locally anchor the microfilament system to the plasma membrane, in adherens junctions. Ca(2+)-independent adhesions were reported to mainly involve members of the Ig superfamily. In this study, we performed three-dimensional microscopic analysis of the relative subcellular distributions of these two endothelial intercellular adhesion systems. We show that cadherins are located at adjacent (usually more apical), yet clearly distinct domains of the lateral plasma membrane, compared to PECAM-1. Moreover, cadherins were first organized in adherens junctions within 2 h after seeding of endothelial cells, forming multiple lateral patches which developed into an extensive belt-like structure over a period of 24 h. PECAM-1 became associated with surface adhesions significantly later and became progressively associated with the cadherin-containing adhesions. Cadherins and PECAM-1 also differed in their detergent extractability, reflecting differences in their mode of association with the cytoskeleton. Moreover, the two adhesion systems could be differentially modulated since short treatment with the Ca2+ chelator EGTA, disrupted the cadherin junctions leaving PECAM-1 apparently intact. These results confirm that endothelial cells possess distinct intercellular contact mechanisms that differ in their spatial and temporal organization as well as in their functional properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.