Abstract

BackgroundFocal and rotational activations have been demonstrated in atrial fibrillation (AF), but their relationship to each other and to structural remodeling remains unclear. ObjectiveThe purpose of this study was to assess the relationship of focal and rotational activations to underlying low-voltage zones (LVZs) (<0.5 mV) and to determine whether there was a temporal (≤500 ms) and spatial (≤12 mm) relationship between these activations. MethodsPatients undergoing catheter ablation for persistent AF were included. All patients underwent pulmonary vein isolation. Unipolar signals were collected to identify focal and rotational activations using a wavefront propagation algorithm. ResultsIn 40 patients, 105 activations were identified (57 [54.3%] focal; 48 [45.7%] rotational). Rotational activations were co-localized to LVZs (35/48 [72.9%]) whereas focal activations were not (11/57 in LVZ [19.3%]; P <.001). The proportion of the left atrium occupied by LVZs predicted rotational activations occurrence (area under the curve 0.96; 95% confidence interval 0.90–1.00; P <.001). In patients with a relatively healthy atrium, in which the atrium consisted of ≤15% LVZs, only focal activations were identified. Thirty-two of the 35 rotational activations (91.4%) located in LVZs also showed a temporal and spatial relationship to a focal activation. The presence of a LVZ within 12 mm of the focal activation was a strong predictor for whether a paired rotational activation would also occur in that vicinity. ConclusionRotational activations are largely confined to areas of structural remodeling and have a clear spatial and temporal relationship with focal activations suggesting they are dependent on them. These novel mechanistic observations outline a plausible model for patient-specific mechanisms maintaining AF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.