Abstract

Growing demand for bioenergy, biofuels, and bioproducts has increased interests in the utilization of biomass residues from forest treatments as feedstock. In areas with limited history of industrial biomass utilization, uncertainties in the quantity, distribution, and cost of biomass production and logistics can hinder the development of new bio-based industries. This paper introduces a new methodology to quantify and spatially describe delivered feedstock volumes and costs across landscapes of arbitrary size in ways that characterize operational and annual management decision-making. Using National Agricultural Imagery Program (NAIP) imagery, the forest is segmented into operational-level treatment units. A remote sensing model based on NAIP imagery and Forest Inventory and Analysis plot data are used to attribute treatment units with stand-level estimates of basal area, tree density, aboveground biomass, and quadratic mean diameter. These methods are applied to a study site in southwestern Colorado to assess the quantity and distribution of treatment residue for use in bioenergy production. Results from the case study demonstrate how this generalized approach can be used in the analysis and decision-making process when establishing new bioenergy industries that use forest residue as feedstock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.