Abstract

AbstractWalleye pollock Theragra chalcogramma (pollock hereafter) is a key ecological and economic species in the eastern Bering Sea, yet detailed synthesis of the spatial and temporal patterns of pollock ichthyoplankton in this important region is lacking. This knowledge gap is particularly severe considering that egg and larval distribution are essential to reconstructing spawning locations and early life stages drift pathways. We used 19 yr of ichthyoplankton collections to determine the spatial and temporal patterns of egg and larval distribution. Generalized additive models (GAMs) identified two primary temporal pulses of pollock eggs, the first occurring from 20 February to 31 March and the second from 20 April to 20 May; larvae showed similar, but slightly lagged, pulses. Based on generalized cross‐validation and information theory, a GAM model that allowed for different seasonal patterns in egg density within three unique areas outperformed a GAM that assumed a single fixed seasonal pattern across the entire eastern Bering Sea. This ‘area‐dependent’ GAM predicted the highest densities of eggs (i.e., potential spawning locations) in three major areas of the eastern Bering Sea: near Bogoslof Island (February–April), north of Unimak Island and the Alaska Peninsula (March–April), and around the Pribilof Islands (April–August). Unique temporal patterns of egg density were observed for each area, suggesting that pollock spawning may be more spatially and temporally complex than previously assumed. Moreover, this work provides a valuable baseline of pollock spawning to which future changes, such as those resulting from climate variability, may be compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call