Abstract

Monitoring glacier mass balance is crucial to managing water resources and also to understanding climate change for the arid and semi-arid regions of Central Asia. This study extracted the inter-annual oscillations of glacier mass over Central Asia from the first ten principal components (S-PCs) of filtered variability via multichannel singular spectral analysis (MSSA), based on gridded data of glacier mass inferred from Gravity Recovery and Climate Experiment (GRACE) data obtained from July 2002 to March 2015. Two significant cycles of glacier mass balance oscillations were identified. The first cycle with a period of 6.1-year accounted for 54.5% of the total variance and the second with a period of 2.3-year accounted for 4.3%. The 6.1-year oscillation exhibited a stronger variability compared with the 2.3-year oscillation. For the 6.1-year oscillation, the results from lagged cross-correlation function suggested that there were significant correlations between glacier mass balances and precipitation variations with the precipitation variations leading the response of glacier mass balances by 9–16 months.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call