Abstract

Drought acutely affects economic sectors, natural habitats and communities. Understanding the past spatial and temporal patterns of drought is crucial because it facilitates the forecasting of future drought occurrences and informs decision-making processes for possible adaptive measures. This is especially important in view of a changing climate. This study employed the World Meteorological Organization (WMO)-recommended standardized precipitation index (SPI) to investigate the spatial and temporal patterns of drought in Zambia from 1960 to 2016. The relationship between the occurrence of consecutive dry days (CDD; consecutive days with less than 1 mm of precipitation) and SPI was also investigated. Horizontal wind vectors at 850 hPa during the core of the rainy season (December–February) were examined to ascertain the patterns of flow during years of extreme and severe drought; and these were contrasted with the patterns of flow in 2007, which was a generally wet year. Pressure vertical velocity was also investigated. Based on the gamma distribution, SPI successfully categorized extremely dry (with a SPI value less than or equal to –2.0) years over Zambia as 1992 and 2015, a severely dry (–1.9 to–1.5) year as 1995, moderately dry (–1.4 to –1.0) years as 1972, 1980, 1987, 1999 and 2005, and 26 near normal years (–0.9 to 0.9). The occurrence of CDD was found to be strongly negatively correlated with SPI with a coefficient of –0.6. Further results suggest that, during wet years, Zambia is influenced by a clockwise circulating low-pressure zone over the south-eastern Angola, a second such zone over the northern and eastern parts, and a third over the Indian Ocean. In stark contrast, years of drought were characterized by an anti-clockwise circulating high-pressure zone over the south-western parts of Zambia, constraining precipitation activities over the country. Further, wet years were characterized by negative pressure vertical velocity anomalies, signifying ascending motion; while drought years were dominated by positive anomalies, signifying descending motion, which suppresses precipitation. These patterns can be used to forecast drought over Zambia and aid in strategic planning to limit the potential damage of drought.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.