Abstract
Karst aquifers are heterotrophic ecosystems fueled by organic matter imported from the surface. The temporal pattern of floods influences organic matter import and the spatial distribution of organic matter and biofilms in aquifer structural zones. We investigated spatial and temporal patterns of bacterial density and activity as indicators of energy availability and microbial dynamics in a karst aquifer. During baseflow, bacterial density and microbial hydrolytic activity were similar in the upper and lower zones of the aquifer. Floods apparently scoured aquifer biofilms and transported soil bacteria into the aquifer, increasing inactive bacterial density in the water column. Respiring bacterial density did not respond to floods and changed little over time. The overall proportion of total bacteria that were respiring was very high on some dates, resulting from a reduction of inactive cell density during flood recession. Floods appear to be key events in scouring senescent microbial assemblages in karst aquifers and stimulating microbial recolonization of the aquifer matrix. We conclude that a conceptual model of karst aquifer structure and function should incorporate changes caused by alternation between flooding and drying in the aquifer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.