Abstract

Studies of ground-nesting birds stress the importance of high nest losses as a factor influencing population dynamics. In particular, nest predation has been found to be accentuated in human-modified forest landscapes. In boreal ecosystems, the assemblage of nest predators is likely to be temporally variable. Thus, multi-year predation studies are required in order to highlight the temporal aspects of habitat and edge-specific ground-nest predation. On this basis, we conducted a 3-year predation study in Northern Norwegian mountain birch forests which had been fragmented by spruce plantations. Track boards were used to identify predators in different habitat and edge types. We used logistic regression to assess the importance and consistency of spatial and temporal predictors for the predation rate of six predator species. Total predation rates were high and were higher in the second and third year (range 89.9–96.7%) compared to the first year of the study (range 57.1–75.3%). Mammalian predation decreased while avian predation increased over the 3 years. Red fox (Vulpes vulpes) and hooded crow (Corvus cornix) were the dominant predators, followed by raven (Corvus corax) and magpie (Pica pica). Pine marten (Martes martes) and stoat (Mustela erminea) predation was low and almost absent in two of the years. Within the study years, predator species exhibited different temporal trends, probably owing to species-specific functional responses. While some edge types were preferred consistently over time by the dominant predators, the spatial pattern of predation was mainly due to unexplained large-scale differences among landscape blocks. This large-scale pattern was constant over the three study years despite the strong temporal fluctuation in predation rates within and between years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call