Abstract

Grazing the woodlands of semi-arid and arid Australia by domestic stock has extensively collapsed perennial *grass populations and thereby fostered woody plant increase. This study examined the pattern of grazing of individual grass plants by sheep in the landscape of a semi-arid woodland, and a model was developed describing the spatial and temporal influences on the grazing pressure placed on plants. Plants of two widespread perennial grass species differing in palatability, Eragrostis eriopoda and Thyridolepis mitchelliana, were examined weekly in two contrasting periods at the CSIRO Lake Mere Research Facility. The plants were located throughout the landscape in lightly- and heavily- stocked paddocks. Patterns of grazing in space and time were determined by examining the grazing of marked tillers. No preference was shown for previously ungrazed plants and only occasionally were previously grazed plants preferred. Thyridolepis mitchelliana plants were slightly preferred over E. eriopoda plants. Landscape zones receiving water and nutrients from elsewhere were preferred for grazing but the effect was weak. The foliage biomass of herbaceous plants in the immediate vicinity of a grass plant did not influence the number of tillers grazed nor the probability of the plant being grazed. Overall the defoliation of individual plants by sheep was weakly determined by landscape location, stocking level, plant species and prevailing forage on offer. The influence of spatial and temporal variation was small; random grazing of grass plants was the rule. This finding suggests that the grazing pressure on palatable perennial grasses in the paddocks of semi-arid woodlands will be similar across wooded landscapes and that spatial variability in plant mortality could be due to. the combined effect of plant water stress, which varies spatially and temporally, and grazing pressure which varies temporally but not spatially.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.