Abstract

An important goal in ecology is to understand controls on community structure in spatially and temporally heterogeneous landscapes, a challenge for which riverine floodplains provide ideal laboratories. We evaluated how spatial position, local habitat features, and seasonal flooding interact to shape aquatic invertebrate community composition in an unregulated riverine floodplain in western Alabama (USA). We quantified sediment invertebrate assemblages and habitat variables at 23 sites over a 15-month period. Dissolved oxygen (DO) varied seasonally and among habitats, with sites less connected to the river channel experiencing frequent hypoxia ( 14 °C during spring and summer as sites became isolated. Overall, local habitat conditions were more important in explaining patterns in assemblage structure than was spatial position in the floodplain (e.g., distance to the main river channel). DO was an important predictor of taxonomic richness among sites, which was highest where hydrologic connections to the main river channel were strongest. Compositional heterogeneity across the floodplain was lowest immediately following inundation and increased as individual sites became hydrologically isolated. Our results illustrate how geomorphic structure and seasonal flooding interact to shape floodplain aquatic assemblages. The flood pulse of lowland rivers influences biodiversity through effects of connectivity on hydrologic flushing in different floodplain habitats, which may prevent the development of harsh environmental conditions that exclude certain taxa. Such interactions highlight the ongoing consequences of river regulation for taxonomically diverse floodplain ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call