Abstract

Water transport and water management are fundamental to polymer electrolyte membrane fuel cell operation. Accurate measurements of water content within and across the Nafion layer are required to elucidate water transport behavior and validate existing numerical models. We report here a direct measurement of water content profiles across a Nafion layer under wetting and drying conditions, using a novel magnetic resonance imaging methodology developed for this purpose. This method, multi-echo double half k-space spin echo single point imaging, based on a pure phase encode spin echo, is designed for high resolution 1D depth imaging of thin film samples. The method generates high resolution (<8 μm) depth images with an SNR greater than 20, in an image acquisition time of less than 2 min. The high temporal resolution permits water content measurements in the transient states of wetting and drying, in addition to the steady state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call