Abstract

BackgroundEthiopia is considered as center of diversity for barley (Hordeum vulgare L.) and it is grown across different agro-ecologies of the country. Unraveling population structure and gene flow status on temporal scales assists an evaluation of the consequences of physical, demographic and overall environmental changes on the stability and persistence of populations. This study was to examine spatial and temporal genetic variation within and among barley landrace samples collected over a period of four decades, using simple sequence repeat markers.ResultsResults from STRUCTURE, neighbor joining tree and discriminant analysis of principal component (DAPC) analysis revealed presence low-to-high genetic diversity among the landraces and grouped the landraces into three clusters. The cluster analysis revealed a close relationship between landraces along geographic proximity with genetic distance increases along with geographic distance. From analysis of molecular variance (AMOVA) in terms of collection year, it was observed that within-population genetic diversity much higher than between population and that the temporal differentiation is considerably smaller. The low-to-high genetic differentiation between landraces could be attributed to gene flow across the region as a consequence of seed exchange among farmers.ConclusionThe results demonstrate that this set of SSRs was highly informative and useful in generating a meaningful classification of barley germplasms. Furthermore, results obtained from this study also suggest that landraces are a source of valuable germplasm for sustainable agriculture in the context of future climate change and in situ conservation strategies following adaptation to local environments.

Highlights

  • In plant natural populations, genetic structure is mainly influenced by the species breeding system, gene flow, genetic drift and natural selection [1]

  • Plant materials A total of 376 barley landraces and eight improved cultivars were selected from 585 landraces and 10 cultivars obtained from Ethiopian Biodiversity Institute (EBI) and Sinana Agricultural Research Center (SARC), respectively, for Simple sequence repeats (SSR) genotyping, population structure, spatial and temporal analysis

  • Conclusion and future studies From the observed variability in present study, it can be argued that Ethiopian barley landraces have high genetic diversity

Read more

Summary

Introduction

Genetic structure is mainly influenced by the species breeding system, gene flow, genetic drift and natural selection [1]. An increase in climate variability has led to instabilities in agricultural production systems across the globe, sometimes leading to food shortages and unexpected rises in food prices [3, 4]. To alleviate this phenomenon, it is necessary to build sustainable systems that can ensure food security through the stabilization of agricultural production [5]. Landraces are a critical element of food security and in many regions of the world, the cultivation of landraces is still common, in particular in the centers of crop diversity [12,13,14] and are used in breeding due to their unique variability in regard to adaptive traits [15, 16]. This study was to examine spatial and temporal genetic variation within and among barley landrace samples collected over a period of four decades, using simple sequence repeat markers

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.