Abstract

AbstractDuring a one‐year period temporal and spatial variations in suspended sediment concentration (SSC) and deposition were studied on a salt and freshwater tidal marsh in the Scheldt estuary (Belgium, SW Netherlands) using automatic water sampling stations and sediment traps. Temporal variations were found to be controlled by tidal inundation. The initial SSC, measured above the marsh surface at the beginning of inundation events, increases linearly with inundation height at high tide. In accordance with this an exponential relationship is observed between inundation time and sedimentation rates, measured over 25 spring–neap cycles. In addition both SSC and sedimentation rates are higher during winter than during summer for the same inundation height or time. Although spatial differences in vegetation characteristics are large between and within the studied salt and freshwater marsh, they do not affect the spatial sedimentation pattern. Sedimentation rates however strongly decrease with increasing (1) surface elevation, (2) distance from the nearest creek or marsh edge and (3) distance from the marsh edge measured along the nearest creek. Based on these three morphometric parameters, the spatio‐temporal sedimentation pattern can be modelled very well using a single multiple regression model for both the salt and freshwater marsh. A method is presented to compute two‐dimensional sedimentation patterns, based on spatial implementation of this regression model. Copyright © 2003 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.