Abstract
Estimating evapotranspiration's spatiotemporal variance is critical for regional water resource management and allocation, including irrigation scheduling, drought monitoring, and forecasting. The Surface Energy Balance Algorithm for Land (SEBAL) method can be used to estimate spatio-temporal variations in evapotranspiration (ET) using remote sensing-based variables like Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), surface albedo, transmittance, and surface emissivity. The main aim of the study was to evaluate the actual evapotranspiration for the lower Bhavani basin, Tamil Nadu based on remote sensing methods using Landsat 8 data for the years 2018 to 2020. The actual evapotranspiration was estimated using SEBAL model and its spatial variation was compared over different land covers. The estimated values of daily actual evapotranspiration in the lower Bhavani basin ranged from 0 to 4.72 mm day-1. Thus it is evident that SEBAL model can be used to predict ET with limited ground base hydrological data. The spatially estimated ET values will help in managing the crop water requirement at each stage of crop and irrigation scheduling, which will ensure the efficient use of available water resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.