Abstract

Access to water through shallow groundwater wells is a common practice in coastal settlements. This, coupled with a lack of planning for wastewater disposal promotes fecal contamination of groundwater and poses a threat to human health. Here, the spatial and temporal dynamics of groundwater fecal contamination was evaluated during summer and winter (2013 and 2014) in a coastal protected area having a high touristic relevance (Cabo Polonio, Uruguay). Fecal coliforms (FC) abundance in groundwater was significantly higher during summer, related to an influx of ~ 1000 tourists per day. A significant spatial autocorrelation was found in 2014, when the abundance of FC in a well was influenced by its three nearest wells (Moran and Geary tests). The applied statistical models (mixed models) indicated that total phosphorus and organic matter were the variables significantly explaining FC abundance. The risk for human health was estimated using groundwater-extracted DNA and qPCR of genes encoding for E. coli virulence factors (stx1, stx2, and eae). Potential Shiga toxin-producing enteropathogenic and enterohemorrhagic pathotypes were detected, even at FC abundances ≤ 1CFU (100mL-1). Moreover, we found that contaminated groundwater reached the beach, being the presence of FC in sand detected even in winter and showing its highest frequency nearby groundwater wells consistently having high FC abundance (hot spots). Altogether, the results show that fecal contamination of shallow groundwater in Cabo Polonio involves a risk for human health that intensifies during summer (associated to a significant increase of tourists). This contamination also impacts the beach, where FC can remain through the whole year.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call