Abstract

Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression to quantify the influence of drought and temporal trends in annual number and mean size of wildfires. Analyses confirmed drought as an important driver of both occurrences and fire size. When both drought and time were incorporated in linear regression models, the number of wildfires showed a declining trend across the full study area, despite housing density increasing in magnitude and spatial extent. Fires caused by campfires and debris-burning did not show any temporal trends. Comparison of spatial models representing biophysical, anthropogenic and combined factors demonstrated human influences on wildfire occurrences, especially human activity, infrastructure and property values. We also identified a non-linear relationship between housing density and wildfire occurrence. Large wildfire occurrence was predicted by similar variables to all occurrences, except the direction of influence changed. Understanding these spatial and temporal drivers of wildfire occurrence has implications for land-use planning, wildfire suppression strategies and ecological goals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.