Abstract

In-situ pH of atmospheric particulate, defined as the pH value of aqueous phase in ambient aerosol, has been reported to have significant influence on the formation progress of secondary aerosol, especially through the heterogeneous pathway. In this study, PM2.5 samples were collected in the marine and costal area of Bohai Sea from September 8th to October 8th in 2013, with daytime and nighttime separated. Eight water-soluble ions including SO42−, NO3−, Cl−, NH4+, K+, Ca2+, Na+ and Mg2+ were analyzed by ion chromatography. The in-situ pH of PM2.5 was estimated using Aerosol Inorganics Model II, with meteorological parameters (temperature and relative humidity) and basic chemical composition data (concentrations of water-soluble ions) serving as input. Five indicators were conjunctively applied to describe the spatial and temporal characteristics of PM2.5 acidity over Bohai Sea during autumn. As a result, strong acidity was found in both marine and coastal area. Marine area had a stronger acidity under a more NH4+-deficiency and humid condition. And the difference of PM2.5 acidity between daytime and nighttime was more obvious in coastal area than that in marine area, with stronger acidity observed during the daytime. Local SO2 emission was identified as an important factor influencing the diurnal variation of aerosol acidity. Meanwhile, sulfurous species were identified as a mixture of NH4HSO4 and H2SO4 in marine area while a mixture of NH4HSO4 and (NH4)2SO4 in the coastal area. Analysis in the impact of aerosol acidity on nitrate formation has indicated that heterogeneous pathways were important in nitrate formation in coastal area of Bohai Sea as well as the homogeneous pathways. Capsule abstractPM2.5 was highly acidic around Bohai Sea, and the acidity of PM2.5 was stronger in marine area than coastal area during autumn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.