Abstract

Although the dominant view posits that developmental dyslexia (DD) arises from a deficit in phonological processing, emerging evidence suggest that DD could result from a more basic cross-modal letter-to-speech sound integration deficit. Letters have to be precisely selected from irrelevant and cluttering letters by rapid orienting of visual attention before the correct letter-to-speech sound integration applies. In the present study the time-course of spatial attention was investigated measuring target detection reaction times (RTs) in a cuing paradigm, while temporal attention was investigated by assessing impaired identification of the first of two sequentially presented masked visual objects. Spatial and temporal attention were slower in dyslexic children with a deficit in pseudoword reading (N = 14) compared to chronological age (N = 43) and to dyslexics without a deficit in pseudoword reading (N = 18), suggesting a direct link between visual attention efficiency and phonological decoding skills. Individual differences in these visual attention mechanisms were specifically related to pseudoword reading accuracy in dyslexics. The role of spatial and temporal attention in the graphemic parsing process might be related to a basic oscillatory “temporal sampling” dysfunction.

Highlights

  • Developmental dyslexia (DD) is a neurodevelopmental disorder identified in about 10% of children which refers to a pattern of learning difficulties characterized by problems with accurate or fluent word recognition, poor decoding and poor spelling abilities, despite normal intelligence, and adequate access to conventional instruction (American Psychiatric Association, 2013).According to the dual-route model, written words can be processed either by the sub-lexical route, based on grapheme-to-phoneme correspondences, allowing us to read unfamiliar words and pseudowords, or by the lexical route, based on lexical unit correspondences, crucial for reading familiar and irregular words only

  • The attentional cuing effect was present at the shortest cuetarget delay (100 ms) in both NR and DDP+, as predicted by automatic capture theories

  • DDP− children showed a slower visual-spatial attentional orienting, because the cuing effect was not present at the short cue-target delay whereas it appears at the long cue-target delay, as predicted by the “Sluggish Attentional Shifting” (SAS)” theory (Hari and Renvall, 2001; Facoetti et al, 2010a; Lallier et al, 2010; see Facoetti, 2012, for a recent review)

Read more

Summary

Introduction

Developmental dyslexia (DD) is a neurodevelopmental disorder identified in about 10% of children which refers to a pattern of learning difficulties characterized by problems with accurate or fluent word recognition, poor decoding and poor spelling abilities, despite normal intelligence, and adequate access to conventional instruction (American Psychiatric Association, 2013).According to the dual-route model (see Perry et al, 2007 for a review), written words can be processed either by the sub-lexical route, based on grapheme-to-phoneme correspondences, allowing us to read unfamiliar words and pseudowords, or by the lexical route, based on lexical unit correspondences, crucial for reading familiar and irregular words only. Phonological dyslexics show great difficulties in reading unfamiliar words and pseudowords compared to known words, and this is thought to arise from damage to the sub-lexical route. Surface dyslexia is characterized by impaired reading of irregular words, and this is thought to arise from a damage in the lexical route (e.g., Castles and Coltheart, 1993), potentially linked to an under-stimulation of the visual word recognition system resulting from low experience with literacy. It is crucial to note that— regardless of spelling-sound regularity—for a beginning reader all words are at first pseudowords because the lexical-orthographic representations have still to be developed. An efficient learning to read is crucially mediated by an accurate and fluent use of the sublexical route (e.g., Goswami et al, 2000; see Vellutino et al, 2004, for a review)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.