Abstract

Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas, known as urban heat island effect. Thermal remote sensors measure the radiation emitted by ground objects, which can be used to estimate the land surface temperature and are beneficial for studying urban heat island effects. The present study investigates the spatial and temporal variations in the effects of urban heat island over Tiruchirappalli city in India during the summer and winter seasons. The study also identifies hot spots and cold spots within the study area. In this study, a significant land surface temperature difference was observed between the urban and rural areas, predominantly at night, indicating the presence of urban heat island at night. These diurnal land surface temperature fluctuations are also detected seasonally, with a relatively higher temperature intensity during the summer. The trend line analysis shows that the mean land surface temperature of the study area is increasing at a rate of 0.166 K/decade with p less than 0.01. By using the spatial autocorrelation method with the urban heat island index as the key parameter, hot spots with a 99 percent confidence level and a 95 percent confidence level were found within the urban area. A hot spot with 95 and 90 percent confidence level was identified outside the urban area. This spike in temperature for a particular region in the rural area is due to industry and the associated built-up area. The study also identified cold spots with a 90 percent confidence level within the rural area. However, cold spots with a 95 and 99 percent confidence level were not identified within the study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call