Abstract

Natural and anthropogenic disasters are associated with air quality concerns due to the potential redistribution of pollutants in the environment. Our objective was to conduct a spatiotemporal analysis of air concentrations of benzene, toluene, ethylbenzne, and xylene (BTEX) and criteria air pollutants in North Carolina during and after Hurricane Florence. Three sampling campaigns were carried out immediately after the storm (September 2018) and at four-month intervals. BTEX were measured along major roads. Concurrent criteria air pollutant concentrations were predicted from modeling. Correlation between air pollutants and possible point sources was conducted using spatial regression. Exceedances of ambient air criteria were observed for benzene (in all sampling periods) and PM2.5 (mostly immediately after Florence). For both, there was an association between higher concentrations and fueling stations, particularly immediately after Florence. For other pollutants, concentrations were generally below levels of regulatory concern. Through characterization of air quality under both disaster and “normal” conditions, this study demonstrates spatial and temporal variation in air pollutants. We found that only benzene and PM2.5 were present at levels of potential concern, and there were localized increases immediately after the hurricane. These substances warrant particular attention in future disaster response research (DR2) investigations.

Highlights

  • The increase in the frequency and intensity of hurricanes and typhoons is one of the most notable signs of climate change [1]

  • Air pollution includes both criteria air pollutants regulated by national ambient air quality standards and air toxics, such as volatile organic compounds (VOCs)

  • This study investigated the spatial and temporal variation of BTEX and criteria air pollutants in a large geographical area in eastern North Carolina to examine the potential impacts of wide-spread flooding associated with Hurricane Florence

Read more

Summary

Introduction

The increase in the frequency and intensity of hurricanes and typhoons is one of the most notable signs of climate change [1]. While the monetary losses due to destruction of property are among the most notable concerns regarding natural disasters [2], the potential for immediate and delayed human health effects from environmental mobilization of contaminants is widely acknowledged [1,3]. Increasing attention is being devoted to the potential for natural disasters to affect the release, fate, and transport of air pollutants in the environment [4]. Air pollution includes both criteria air pollutants regulated by national ambient air quality standards (e.g., ozone, particulate matter, lead, nitrogen dioxide, carbon monoxide, and sulfur dioxide) and air toxics, such as volatile organic compounds (VOCs). The associations between climate change, criteria air pollutants and human

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.