Abstract

Spatial and temporal variations in gill and palp size were studied during 1 year in naturally-settled populations of the Pacific oyster Crassostrea gigas, reciprocally transplanted between two contrasting sites located along a marked gradient of turbidity conditions. The variability of suspended particulate matter (SPM) and food particles, estimated by the concentration of chlorophyll-a, was measured with in situ water-quality probes. Over a full seasonal cycle, oysters exposed to high-turbidity (HT) conditions exhibited a lower gill-to-palp (G:P) ratio, compared with those exposed to low-turbidity (LT) conditions. Seasonal variations in the G:P ratio were observed at the LT site in relation to the spring phytoplanktonic bloom, but differed from those that had been observed previously. In fact, palp enlargement and gill narrowing (lower seasonal G:P ratio) suggest that oysters improved their pre-ingestive selection efficiency as a priority, rather than their filtering capacity. This result indicates that suspension-feeding bivalves do not have independent plastic responses of their foraging structures to either SPM quality or quantity, and that the direction of variations in the G:P ratio depends on the combination of these two factors. At the HT site, no seasonal pattern was observed in the G:P ratio. This can be explained by the strong hourly variations in SPM and chlorophyll-a, associated with tidal cycles, with daily variations that can be similar to those observed over a year. Reciprocal transplantations showed that oysters originating from the same site can differ in their feeding apparatus morphology when they grow in different environments and that temporal variations in the G:P ratio of oysters transplanted to a new environment converge towards that of individuals that have spent their entire life in this environment. Variations in the relative gill and palp sizes of C...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.