Abstract

We perform spatial and spectral analyses of the Large Magellanic Cloud (LMC) gamma-ray emission collected over 66 months by the Fermi Gamma-ray Space Telescope. In our spatial analysis, we model the LMC cosmic-ray distribution and gamma-ray production using observed maps of the LMC interstellar medium, star formation history, interstellar radiation field, and synchrotron emission. We use bootstrapping of the data to quantify the robustness of spatial model performance. We model the LMC gamma-ray spectrum using fitting functions derived from the physics of $\pi^0$ decay, bremsstrahlung, and inverse Compton scattering. We find the integrated gamma-ray flux of the LMC from 200 MeV to 20 GeV to be $1.38 \pm 0.02 \times 10^{-7}$ ph cm$^{-2}$ s$^{-1}$, of which we attribute about 10% to inverse Compton scattering and 40% to bremsstrahlung. From our work, we conclude that the spectral index of the LMC cosmic-ray proton population is 2.4$\pm$0.2, and we find that cosmic-ray energy loss through gamma-ray production is concentrated within a few hundred pc of acceleration sites. Assuming cosmic-ray energy equipartition with magnetic fields, we estimate LMC cosmic rays encounter an average magnetic field strength ~3 $\mu$G.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.