Abstract

We describe spatial and temporal patterns of fine particulate matter (PM(2.5)) and of 12 of its constituent chemical elements commonly observed in measurements at residential locations in New York City (NYC). These elements, that is, Ni, V, As, Se, S, Cl, Na, K, Pb, Cu, Zn, and Mn, had significant spatial and temporal variability at 10 PM(2.5) sampling locations during our winter and summer sampling campaigns. By grouping the elements into traditional source apportionment categories, we show that specific chemical components of PM(2.5) considered to have a common source category, such as As and Se for coal combustion, do not always follow the same temporal or spatial pattern. PM(2.5) mass had only limited spatial variability and a slight summertime concentration enhancement. Measurements at residential locations were, on average, consistent with EPA sampling network measurements, although we found that during times of low regional concentration, EPA measurements underestimated the PM(2.5) concentration at residential locations. These results have implications for improved understanding of exposures to specific sources of PM(2.5), and raise some concerns about source profiles used in source-receptor modeling tracer input selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call