Abstract

The GGAs [Golgi-localised, gamma-ear containing, ARF (ADP ribosylation factor)-binding proteins] and the AP-1 (adaptor protein-1) complex are both adaptors for clathrin-mediated intracellular trafficking, but their relationship to each other is unclear. We have used two complementary systems, HeLa cells and Drosophila Dmel2 cells, to investigate GGA and AP-1 function. Immunoelectron microscopy of endogenous AP-1 and GGA in Dmel2 cells shows that they are predominantly associated with distinct clathrin-coated structures. Depletion of either GGA or AP-1 by RNAi does not affect the incorporation of the other adaptor into clathrin-coated vesicles (CCVs), and the cargo protein GFP-LERP (green fluorescent protein-lysosomal enzyme receptor protein) is lost from CCVs only when both adaptors are depleted. Similar results were obtained using HeLa cells treated with siRNA to deplete all three GGAs simultaneously. AP-1 was still incorporated into CCVs after GGA depletion and vice versa, and both needed to be depleted for a robust inhibition of receptor-mediated sorting of lysosomal hydrolases. In contrast, downregulation of major histocompatibility complex (MHC) class I by HIV-1 Nef, which requires AP-1, was not affected by a triple GGA knockdown. Thus, our results indicate that the two adaptors can function independently of each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.