Abstract
Simplified thin-film structures with the capability of spatial and frequency-selective optical field coupling and absorption are desirable for nanophotonics. Herein, we demonstrate the configuration of a 200-nm-thick random metasurface formed by refractory metal nanoresonators, showing near-unity absorption (absorptivity > 90%) covering the visible and near-infrared range (0.380-1.167 µm). Importantly, the resonant optical field is observed to be concentrated in different spatial areas according to different frequencies, paving a feasible way to artificially manipulate spatial coupling and optical absorption via the spectral frequency. The methods and conclusions derived in this work are applicable throughout a wide energy range and hold applications for frequency-selective nanoscale optical field manipulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.