Abstract
Recent years have seen a rapid growth in interest in the addition of a spatial perspective, especially in the social and health sciences, and in part this growth has been driven by the ready availability of georeferenced or geospatial data, and the tools to analyze them: geographic information science (GIS), spatial analysis, and spatial statistics. Indeed, research on race/ethnic segregation and other forms of social stratification as well as research on human health and behavior problems, such as obesity, mental health, risk-taking behaviors, and crime, depend on the collection and analysis of individual- and contextual-level (geographic area) data across a wide range of spatial and temporal scales. Given all of these considerations, researchers are continuously developing new ways to harness and analyze geo-referenced data. Indeed, a prerequisite for spatial analysis is the availability of information on locations (i.e., places) and the attributes of those locations (e.g., poverty rates, educational attainment, religious participation, or disease prevalence). This Oxford Bibliographies article has two main parts. First, following a general overview of spatial concepts and spatial thinking in sociology, we introduce the field of spatial analysis focusing on easily available textbooks (introductory, handbooks, and advanced), journals, data, and online instructional resources. The second half of this article provides an explicit focus on spatial approaches within specific areas of sociological inquiry, including crime, demography, education, health, inequality, and religion. This section is not meant to be exhaustive but rather to indicate how some concepts, measures, data, and methods have been used by sociologists, criminologists, and demographers during their research. Throughout all sections we have attempted to introduce classic articles as well as contemporary studies. Spatial analysis is a general term to describe an array of statistical techniques that utilize locational information to better understand the pattern of observed attribute values and the processes that generated the observed pattern. The best-known early example of spatial analysis is John Snow’s 1854 cholera map of London, but the origins of spatial analysis can be traced back to France during the 1820s and 1830s and the period of morale statistique, specifically the work of Guerry, d’Angeville, Duplin, and Quetelet. The foundation for current spatial statistical analysis practice is built on methodological development in both statistics and ecology during the 1950s and quantitative geography during the 1960s and 1970s and it is a field that has been greatly enhanced by improvements in computer and information technologies relevant to the collection, and visualization and analysis of geographic or geospatial data. In the early 21st century, four main methodological approaches to spatial analysis can be identified in the literature: exploratory spatial data analysis (ESDA), spatial statistics, spatial econometrics, and geostatistics. The diversity of spatial-analytical methods available to researchers is wide and growing, which is also a function of the different types of analytical units and data types used in formal spatial analysis—specifically, point data (e.g., crime events, disease cases), line data (e.g., networks, routes), spatial continuous or field data (e.g., accessibility surfaces), and area or lattice data (e.g., unemployment and mortality rates). Applications of geospatial data and/or spatial analysis are increasingly found in sociological research, especially in studies of spatial inequality, residential segregation, demography, education, religion, neighborhoods and health, and criminology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.