Abstract

The local equivalence ratio distribution in a flame affects its shape and response under velocity perturbations. The forced heat release response of stratified lean-premixed flames to acoustic velocity fluctuations are investigated via chemiluminescence measurements and spatial Fourier transfer analysis. A laboratory scale burner and its boundary conditions were designed to generate high-amplitude acoustic velocity fluctuations in flames. These flames are subject to inlet radial equivalence ratio distributions created via a split annular fuel delivery system outfitted with a swirling stabilizer. Simultaneous measurements on the oscillations of inlet velocity and heat release rate were carried out via a two-microphone technique, and OH* chemiluminescence. The measurements show that, for a given mean total power and equivalence ratio (ϕg = 0.60), the flame responses vary significantly depending on forcing frequency, equivalence ratio split and velocity fluctuation amplitude, showing significant non-linearities with respect to forcing amplitude and stratification ratio. Furthermore, the spatial Fourier transfer analysis shows the underlying changes in the rate of heat release, including the direction and speed of the perturbation within the flame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.