Abstract
The perception of sound by human listeners in a room has been shown to be affected by the spatial attributes of the sound field. These spatial attributes have been studied using microphone and loudspeaker arrays separately. Systems that combine both loudspeaker and microphone arrays, termed multiple-input multiple-output (MIMO) systems, facilitate enhanced spatial analysis compared to systems with a single array, thanks to the simultaneous use of the arrays and the additional spatial diversity. Using MIMO systems, room impulse responses (RIRs) can be presented using matrix notation, which enables a unique study of a sound field’s spatial attributes, employing methods from linear algebra. For example, a matrix’s rank and null space can be studied to reveal spatial information on a room, such as the number of dominant room reflections and their direction of arrival to the microphone array and the direction of radiation from the loudspeaker array. In this contribution, a theory of the spatial analysis of a sound field using a MIMO system comprised of spherical arrays is developed and a simulation study is presented. In the study, tools proposed for processing MIMO RIRs with the aim of revealing valuable information about acoustic reflections paths are evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.