Abstract

The isthmic organizer mediating differentiation of mid- and hindbrain during vertebrate development is characterized by a well-defined pattern of locally restricted gene expression domains around the mid-hindbrain boundary (MHB). This pattern is established and maintained by a regulatory network between several transcription and secreted factors that is not yet understood in full detail. In this contribution we show that a Boolean analysis of the characteristic spatial gene expression patterns at the murine MHB reveals key regulatory interactions in this network. Our analysis employs techniques from computational logic for the minimization of Boolean functions. This approach allows us to predict also the interplay of the various regulatory interactions. In particular, we predict a maintaining, rather than inducing, effect of Fgf8 on Wnt1 expression, an issue that remained unclear from published data. Using mouse anterior neural plate/tube explant cultures, we provide experimental evidence that Fgf8 in fact only maintains but does not induce ectopic Wnt1 expression in these explants. In combination with previously validated interactions, this finding allows for the construction of a regulatory network between key transcription and secreted factors at the MHB. Analyses of Boolean, differential equation and reaction-diffusion models of this network confirm that it is indeed able to explain the stable maintenance of the MHB as well as time-courses of expression patterns both under wild-type and various knock-out conditions. In conclusion, we demonstrate that similar to temporal also spatial expression patterns can be used to gain information about the structure of regulatory networks. We show, in particular, that the spatial gene expression patterns around the MHB help us to understand the maintenance of this boundary on a systems level.

Highlights

  • During vertebrate development, the central nervous system arises from a precursor tissue called neural plate

  • We focus on the following eight isthmic organizer (IsO) genes: Otx2, Gbx2, Fgf8, Wnt1, the Engrailed genes En1 and En2, which we subsume under the identifier En, as well as the Pax genes Pax2 and Pax5, which we subsume under the identifier Pax

  • We describe a methodology for the inference of regulatory interactions by systematic logical analyses of spatial gene expression patterns

Read more

Summary

Introduction

The central nervous system arises from a precursor tissue called neural plate After gastrulation this neural plate is patterned along the anteriorposterior axis into four regions, which continue to develop into forebrain, midbrain, hindbrain and spinal cord. This patterning is determined by a well-defined and locally restricted expression of genes, and by the action of short and long range signaling centers, called secondary organizers [1]. Our analysis is based on these gene’s steady state expression pattern at E10.5, which is displayed schematically in Figures 1A and 1B. All relevant primary research references are listed in Text S1

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call