Abstract

The Islamic Republic of Iran reported its first COVID-19 cases by 19th February 2020, since then it has become one of the most affected countries, with more than 73,000 cases and 4,585 deaths to this date. Spatial modeling could be used to approach an understanding of structural and sociodemographic factors that have impacted COVID-19 spread at a province-level in Iran. Therefore, in the present paper, we developed a spatial statistical approach to describe how COVID-19 cases are spatially distributed and to identify significant spatial clusters of cases and how socioeconomic and climatic features of Iranian provinces might predict the number of cases. The analyses are applied to cumulative cases of the disease from February 19th to March 18th. They correspond to obtaining maps associated with quartiles for rates of COVID-19 cases smoothed through a Bayesian technique and relative risks, the calculation of global (Moran's I) and local indicators of spatial autocorrelation (LISA), both univariate and bivariate, to derive significant clustering, and the fit of a multivariate spatial lag model considering a set of variables potentially affecting the presence of the disease. We identified a cluster of provinces with significantly higher rates of COVID-19 cases around Tehran (p-value< 0.05), indicating that the COVID-19 spread within Iran was spatially correlated. Urbanized, highly connected provinces with older population structures and higher average temperatures were the most susceptible to present a higher number of COVID-19 cases (p-value < 0.05). Interestingly, literacy is a factor that is associated with a decrease in the number of cases (p-value < 0.05), which might be directly related to health literacy and compliance with public health measures. These features indicate that social distancing, protecting older adults, and vulnerable populations, as well as promoting health literacy, might be useful to reduce SARS-CoV-2 spread in Iran. One limitation of our analysis is that the most updated information we found concerning socioeconomic and climatic features is not for 2020, or even for a same year, so that the obtained associations should be interpreted with caution. Our approach could be applied to model COVID-19 outbreaks in other countries with similar characteristics or in case of an upturn in COVID-19 within Iran.

Highlights

  • On 11th March 2020, the General Director of the World Health Organization (WHO), Dr Tedros Adhanom Ghebreyesus, declared the new infectious respiratory disease COVID-19, caused by the infection of novel coronavirus SARS-CoV-2 as a pandemic, due to the rate of growth of new cases, the number of affected people, and the number of deaths [1]

  • Iran was among the first countries reporting a rapid increase in the number of COVID-19 cases

  • Spatial epidemiology is useful to study the spatial distribution of a disease and to identify factors associated with the number of cases of such disease

Read more

Summary

Introduction

On 11th March 2020, the General Director of the World Health Organization (WHO), Dr Tedros Adhanom Ghebreyesus, declared the new infectious respiratory disease COVID-19, caused by the infection of novel coronavirus SARS-CoV-2 as a pandemic, due to the rate of growth of new cases, the number of affected people, and the number of deaths [1]. As of the time of this writing (April 15th, 2020), the number of infected cases world-wide corresponded to more than 1 million, being the most affected countries: Italy (16,523 deaths), Spain (13,341 deaths), USA (10,792 deaths), France (8,911 deaths), United Kingdom (5,373 deaths), and Iran (3,739 deaths) [2,3]. As with other countries, it may be a sub-estimation of cases, and there may be other cases not officially reported [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call