Abstract

Summary This study examines the spatial patterns of annual runoff ratios and their variability and identifies the determinants of runoff indices for 238 reference basins with low levels of anthropogenic influence and 1352 non-reference basins with substantial levels of anthropogenic influence. Runoff ratios are high and runoff ratio coefficients of variation (CV) are low in coastal Pacific Northwest and Northeast basins, both humid temperate climates. The most significant variable that influences annual runoff ratio for both basin types is the average annual days of measurable precipitation. Snow percent of total precipitation and minimum watershed elevation are common predictors of runoff ratio for both types of basins. Slope percent and Horton overland flow are significant predictors for reference basin runoff ratio, while average annual precipitation, basin compactness, and dam storage are significant predictors for non-reference basin runoff ratio. The variables most significantly influencing runoff ratio CV in both types of basins are the average annual days of measurable precipitation, the precipitation seasonality index, and the base flow index. Horton overland flow is a significant predictor for reference basins, while minimum watershed elevation is a significant predictor for non-reference basins. Spatial autocorrelation of ordinary least squares estimated residuals are reduced by geographically weighted regression (GWR) for all models in both basin types. This study shows that GWR modeling, which takes into account spatial non-stationarity, can create more accurate representations of runoff ratio variability in both basin types. The spatially-varying coefficient values in GWR models also show local specific relationships between runoff indices and various climatic and landscape factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.