Abstract

Land Use Regression models (LUR) are the most common tools to estimate intra-urban air pollutant exposure in epidemiological studies. However, number of available and published models in developing and middle up income countries is still scarce. Here, we developed seasonal and overall LUR models for the spatial distribution of benzene, toluene, ethylbenzene and xylene (BTEX) based on 20 monitoring stations and 166 potentially predictive variables (PPVs) in Urmia, Iran. Carcinogenic and non-carcinogenic risks of exposure to BTEX and its sensitivity analysis were assessed using a probabilistic approach. The mean and standard deviation (in brackets) of overall benzene, toluene, ethylbenzene and xylene were 12.83 (16.19), 27.03 (32.00), 4.72 (4.15) and 27.35 (29.36) μg/m3, respectively. In all models the R2 value of LUR models of benzene, toluene, ethylbenzene, xylene and total BTEX ranged from 0.66 to 0.85, 0.61, 0.88, 0.72 to 0.94, 0.75 to 0.84 and 0.67 to 0.93. The root mean square error (RMSE) for leave-one-out cross-validations (LOOCV) for benzene, toluene, ethylbenzene and xylene ranged from 7.48 to 10.31, 23.0 to 30.0, 3.40 to 6.90, 16.27 to 24.49, 36.10-50.0μg/m3, respectively. The estimated lifetime carcinogenic risk (LTCR) indicated that ambient concentration of benzene is at a risk level for Urmia inhabitants (LTCR >10-6). Sensitivity analysis for LTCR model indicated that concentration of benzene (C) was the most effective variable in increasing the carcinogenic risk (correlation coefficient ranged from 0.97 to 0.98 for all models).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.