Abstract

High ambient temperature attributable to global warming has a profound influence on plant growth and development at all stages of the life cycle. The response of plants to high ambient temperature, termed thermomorphogenesis, is characterized by hypocotyl and petiole elongation and hyponastic growth at the seedling stage. However, our understanding of the molecular mechanism of thermomorphogenesis is still rudimentary. Here, we show that a set of four SUPPRESSOR OF PHYA-105 (SPA) genes is required for thermomorphogenesis. Consistently, SPAs are necessary for global changes in gene expression in response to high ambient temperature. In the spaQ mutant at high ambient temperature, the level of SPA1 is unaffected, whereas the thermosensor phytochromeB (phyB) is stabilized. Furthermore, in the absence of four SPA genes, the pivotal transcription factor PIF4 fails to accumulate, indicating a role of SPAs in regulating the phyB-PIF4 module at high ambient temperature. SPA1 directly phosphorylates PIF4 in vitro, and a mutant SPA1 affecting the kinase activity fails to rescue the PIF4 level in addition to the thermo-insensitive phenotype of spaQ, suggesting that the SPA1 kinase activity is necessary for thermomorphogenesis. Taken together, these data suggest that SPAs are new components that integrate light and temperature signaling by fine-tuning the phyB-PIF4 module.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.