Abstract

Soil fungal communities drive diverse ecological processes and are critical in maintaining ecosystems' stability, but the effects of plant invasion on soil fungal diversity, community composition, and functional groups are not well understood. Here, we investigated soil fungal communities in a salt marsh ecosystem with both native (Suaeda salsa) and exotic (Spartina alterniflora) species in the Yellow River Delta. We characterized fungal diversity based on the PCR-amplified Internal Transcribed Spacer 2 (ITS2) DNA sequences from soil extracted total DNA. The plant invasion evidently decreased fungal richness and phylogenetic diversity and significantly altered the taxonomic community composition (indicated by the permutation test, P < 0.001). Co-occurrence networks between fungal species showed fewer network links but were more assembled because of the high modularity after the invasion. As indicated by the fungal Bray-Curtis and weighted UniFrac distances, the fungal community became homogenized with the invasion. FUNGuild database analyses revealed that the invaded sites had a higher proportion of saprophytic fungi, suggesting higher organic matter decomposition potential with the invasion. The plant invasion dramatically inhibited the growth of pathogenic fungi, which may facilitate the expansion of invasive plants in the intertidal habitats. Soil pH and salinity were identified as the most important edaphic factors in shaping the fungal community structures in the context of Spartina alterniflora invasion. Overall, this study elucidates the linkage between plant invasion and soil fungal communities and poses potential consequences for fungal contribution to ecosystem function, including the decomposition of soil organic substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.