Abstract
Inter-area oscillations in bulk power systems are typically poorly controllable by means of local decentralized control. Recent research efforts have been aimed at developing wide- area control strategies that involve communication of remote signals. In conventional wide-area control, the control structure is fixed a priori typically based on modal criteria. In contrast, here we employ the recently-introduced paradigm of sparsity- promoting optimal control to simultaneously identify the optimal control structure and optimize the closed-loop performance. To induce a sparse control architecture, we regularize the standard quadratic performance index with an l1-penalty on the feedback matrix. The quadratic objective functions are inspired by the classic slow coherency theory and are aimed at imitating homogeneous networks without inter-area oscillations. We use the New England power grid model to demonstrate that the proposed combination of the sparsity-promoting control design with the slow coherency objectives performs almost as well as the optimal centralized control while only making use of a single wide-area communication link. In addition to this nominal performance, we also demonstrate that our control strategy yields favorable robustness margins and that it can be used to identify a sparse control architecture for control design via alternative means.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.