Abstract

Action recognition in unconstrained videos is one of the most important challenges in computer vision. In this paper, we propose sparsity-inducing dictionaries as an effective representation for action classification in videos. We demonstrate that features obtained from sparsity based representation provide discriminative information useful for classification of action videos into various action classes. We show that the constructed dictionaries are distinct for a large number of action classes resulting in a significant improvement in classification accuracy on the HMDB51 dataset. We further demonstrate the efficacy of dictionaries and sparsity based classification on other large action video datasets like UCF50.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.