Abstract

Remote sensing image classification plays an important role in a wide range of applications and has caused widely concerns. During the last few years, great efforts have been made to develop a number of scene classification methods for remote sensing images. However, the existing remote sensing image classification methods do not perform satisfactorily in dealing with multi-class classification problems and rely heavily on the quality of data sets. These disadvantages seriously restrict the application of remote sensing image, including industrial research, analysis and calculation of land use and land coverage. To this end, this paper proposes a remote sensing image classification algorithm based on the sparse regularized feature learning method. Specifically, after constructing bag of features by using speeded up robust features extraction algorithm, direct sparsity optimization-based feature selection method is applied for selecting discriminative features, which is used for constructing support vector machine classifier model. The proposed algorithm has been evaluated and compared with other advanced feature selection methods on four public remote sensing image data sets. The experimental results demonstrate the effectiveness of our proposed image classification algorithm, which has been successfully applied to remote sensing image classification tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.